Typical entropy of bfloat16 values seen in weights (and activations) are about 10-12 bits (only 65-75% or so of the value range is used in practice). Sign and mantissa bits tend to be incompressible noise.
This has been exploited several times before in the context of both classical HPC and AI, with lossless compression work from Martin Burtscher's lab (https://userweb.cs.txstate.edu/~burtscher/), fpzip from LLNL (https://computing.llnl.gov/projects/fpzip) and my library dietgpu from 2021 (https://github.com/facebookresearch/dietgpu) which we used to speed training on a large GPU cluster by about 10% wall clock time overall by losslessly compressing all data prior to send and decompressing upon receive (e.g., gradients, weights from backup, etc), which is still computing the same thing as it did before as it is lossless.
Also, rANS is more efficient and easier to implement in SIMD-like instruction sets than Huffman coding. It would reduce the performance latency/throughput penalties as well with DFloat11 (since we have to decompress before we do the arithmetic).
* I work with xmad.ai
The context length alone probably makes it worthwhile even if your models fit in memory, but I'm curious if it improves tokens/sec even all on GPU, since in my very amateur understanding LLMs tend to be constrained by memory bandwidth?
I see it mentioned but can’t understand if it’s based on it or different/better…
/s I'll show myself out
>achieving near information-optimal compression without any loss of precision
So perhaps more lossless as in didn't lose perplexity/benchmarks?
In my mind lossless is precisely zero bits lost along the way.