I hope the IHVs have a look at it because current DX12 seems semi abandoned, with it not supporting buffer pointers even when every gpu made on the last 10 (or more!) years can do pointers just fine, and while Vulkan doesnt do a 2.0 release that cleans things, so it carries a lot of baggage, and specially, tons of drivers that dont implement the extensions that really improve things.
If this api existed, you could emulate openGL on top of this faster than current opengl to vulkan layers, and something like SDL3 gpu would get a 3x/4x boost too.
> Graphics APIs and shader languages have significantly increased in complexity over the past decade. It’s time to start discussing how to strip down the abstractions to simplify development, improve performance, and prepare for future GPU workloads.
A lot of this post went over my head, but I've struggled enough with GLSL for this to be triggering. Learning gets brutal for the lack of middle ground between reinventing every shader every time and using an engine that abstracts shaders from the render pipeline. A lot of open-source projects that use shaders are either allergic to documenting them or are proud of how obtuse the code is. Shadertoy is about as good as it gets, and that's not a compliment.
The only way I learned anything about shaders was from someone who already knew them well. They learned what they knew by spending a solid 7-8 years of their teenage/young adult years doing nearly nothing but GPU programming. There's probably something in between that doesn't involve giving up and using node-based tools, but in a couple decades of trying and failing to grasp it I've never found it.
I also think that the way forward is to go back to software rendering, however this time around those algorithms and data structures are actually hardware accelerated as he points out.
Note that this is an ongoing trend on VFX industry already, about 5 years ago OTOY ported their OctaneRender into CUDA as the main rendering API.
I think it's fair to say that for most gamers, Vulkan/DX12 hasn't really been a net positive, the PSO problem affected many popular games and while Vulkan has been trying to improve, WebGPU is tricky as it has is roots on the first versions of Vulkan.
Perhaps it was a bad idea to go all in to a low level API that exposes many details when the hardware underneath is evolving so fast. Maybe CUDA, as the post says in some places, with its more generic computing support is the right way after all.
Casey argues for ISAs for hardware, including GPUs, instead of heavy drivers. TFA argues for a graphics API surface that is so lean precisely because it fundamentally boils down to a simple and small set of primitives (mapping memory, simple barriers, etc.) that are basically equivalent to a simple ISA.
If a stable ISA was a requirement, I believe we would have converged on these simpler capabilities ahead of time, as a matter of necessity. However, I am not a graphics programmer, so I just offer this as an intellectual provocation to drive conversation.
https://semiengineering.com/knowledge_centers/standards-laws...
There is a constant cycle between domain-specific hardware-hardcoded-algorithm design, and programmable flexible design.
When you look at the DirectX 12 documentation and best-practice guides, you’re constantly warned that certain techniques may perform well on one GPU but poorly on another, and vice versa. That alone shows how fragile this approach can be.
Which makes sense: GPU hardware keeps evolving and has become incredibly complex. Maybe graphics APIs should actually move further up the abstraction ladder again, to a point where you mainly upload models, textures, and a high-level description of what the scene and objects are supposed to do and how they relate to each other. The hardware (and its driver) could then decide what’s optimal and how to turn that into pixels on the screen.
Yes, game engines and (to some extent) RHIs already do this, but having such an approach as a standardized, optional graphics API would be interesting. It would allow GPU vendors to adapt their drivers closely to their hardware, because they arguably know best what their hardware can do and how to do it efficiently.
I was an only-half-joking champion of ditching vertex attrib bindings when we were drafting WebGPU and WGSL, because it's a really nice simplification, but it was felt that would be too much of a departure from existing APIs. (Spending too many of our "Innovation Tokens" on something that would cause dev friction in the beginning)
In WGSL we tried (for a while?) to build language features as "sugar" when we could. You don't have to guess what order or scope a `for` loop uses when we just spec how it desugars into a simpler, more explicit (but more verbose) core form/dialect of the language.
That said, this powerpoint-driven-development flex knocks this back a whole seriousness and earnestness tier and a half: > My prototype API fits in one screen: 150 lines of code. The blog post is titled “No Graphics API”. That’s obviously an impossible goal today, but we got close enough. WebGPU has a smaller feature set and features a ~2700 line API (Emscripten C header).
Try to zoom out on the API and fit those *160* lines on one screen! My browser gives up at 30%, and I am still only seeing 127. This is just dishonesty, and we do not need more of this kind of puffery in the world.
And yeah, it's shorter because it is a toy PoC, even if one I enjoyed seeing someone else's take on it. Among other things, the author pretty dishonestly elides the number of lines the enums would take up. (A texture/data format enum on one line? That's one whole additional Pinocchio right there!)
I took WebGPU.webidl and did a quick pass through removing some of the biggest misses of this API (queries, timers, device loss, errors in general, shader introspection, feature detection) and some of the irrelevant parts (anything touching canvas, external textures), and immediately got it down to 241 declarations.
This kind of dishonest puffery holds back an otherwise interesting article.
Or has the use of Middleware like Unreal Engine largely made them irrelevant? Or should EPIC put out a new Graphics API proposal?
In particular, this fork: https://github.com/RobertBeckebans/nvrhi which adds some niceties and quality of life improvements.
What would be one good primer to be able to comprehend all the design issues raised?
> Meshlet has no clear 1:1 lane to vertex mapping, there’s no straightforward way to run a partial mesh shader wave for selected triangles. This is the main reason mobile GPU vendors haven’t been keen to adapt the desktop centric mesh shader API designed by Nvidia and AMD. Vertex shaders are still important for mobile.
I get that there's no mapping from vertex/triangle to tile until after the mesh shader runs. But even with vertex shaders there's also no mapping from vertex/triangle to tile until after the vertex shader runs. The binning of triangles to tiles has to happen after the vertex/mesh shader stage. So I don't understand why mesh shaders would be worse for mobile TBDR.
I guess this is suggesting that TBDR implementations split the vertex shader into two parts, one that runs before binning and only calculates positions, and one that runs after and computes everything else. I guess this could be done but it sounds crazy to me, probably duplicating most of the work. And if that's the case why isn't there an extension allowing applications to explicitly separate position and attribute calculations for better efficiency? (Maybe there is?)
Edit: I found docs on Intel's site about this. I think I understand now. https://www.intel.com/content/www/us/en/developer/articles/g...
Yes, you have to execute the vertex shader twice, which is extra work. But if your main constraint is memory bandwidth, not FLOPS, then I guess it can be better to throw away the entire output of the vertex shader except the position, rather than save all the output in memory and read it back later during rasterization. At rasterization time when the vertex shader is executed again, you only shade the triangles that actually went into your tile, and the vertex shader outputs stay in local cache and never hit main memory. And this doesn't work with mesh shaders because you can't pick a subset of the mesh's triangles to shade.
It does seem like there ought to be an extension to add separate position-only and attribute-only vertex shaders. But it wouldn't help the mesh shader situation.
* GPU virtualization (e.g., the D3D residency APIs), to allow many applications to share GPU resources (e.g., HBM).
* Undefined behavior: how easy is it for applications to accidentally or intentionally take a dependency on undefined behavior? This can make it harder to translate this new API to an even newer API in the future.
Will it be possible to hallucinate the frame of a game at a similar speed to rendering it with a mesh and textures?
We're already seeing the hybrid version of this where you render a lower res mesh and hallucinate the upscaled, more detailed, more realistic looking skin over the top.
I wouldn't want to be in the game engine business right now :/
Wouldnt this mean double gpu memory usage for uploading a potentially large image? (Even if just for the time the copy is finished)
Vulkan lets the user copy from cpu (host_visible) memory to gpu (device_local) memory without an intermediate gpu buffer, afaik there is no double vram usage there but i might be wrong on that.
Great article btw. I hope something comes out of this!
VAO is the last feature I was missing prior.
Also the other cores will do useful gameplay work so one CPU core for the GPU is ok.
4 CPU cores is also enough for eternity. 1GB shared RAM/VRAM too.
Let's build something good on top of the hardware/OSes/APIs/languages we have now? 3588/linux/OpenGL/C+Java specifically!
Hardware has permanently peaked in many ways, only soft internal protocols can now evolve, I write mine inside TCP/HTTP.
But then game/engine devs want to use the vertex shader producing a uv coordinate and a normal together with a pixel shader that only reads the uv coordinate (or neither for shadow mapping) and don't want to pay for the bandwidth of the unused vertex outputs (or the cost of calculating them).
Or they want to be able to randomly enable any other pipeline stage like tessellation or geometry and the same shader should just work without any performance overhead.