In my direct experience, in the USA, at least Spectrum, AT&T, and Xfinity (Comcast) still run IPv4, of course, but they also have IPv6 working and on by default on their home internet offerings.
All mainstream computer and mobile OSes support it by default and will prefer to connect with it over IPv4.
‘Everyone’ in many areas is using it. For many of us, our parents are using Facebook and watching Netflix over it. Over 50% of Google’s American traffic is over it. It just works.
You know the list of "benefits" is thin when the second item is entirely theoretical. Even though IPv6 doesn't have to do NAT traversal, it still has to punch through your router's firewall which is effectively the same problem. Most ISP provided home routers simply block all incoming IPv6 traffic unless there is outbound traffic first, and provide little to no support for custom IPv6 rules.
Even if that were not an issue, my bet is that there are close to zero popular games that actually use true peer to peer networking.
Can someone explain why it's ambiguous?
On the subject, IPv6 is one of the strangest inventions on the internet. Its utility and practically are obvious no matter how you look at it except... just one thing.
Network-related things are generally easy to remember and then type from memory: IPv4, domain names, standard port numbers. Back in the day it was the phone numbers, again, easy to remember and dial when you need it. IPv6 is just too long and requires copy/paste all the time. This is the only real reason in my opinion, why IPv6 is doomed to be second-grade citizen for (probably) a few more decades.
Enable IPv6 on a TP-Link Omada router (ER7212PC) and all internal services are exposed to the outside world as there is no default IPv6 deny-all rule and no IPv6 firewall. I get why some people are nervous.
[1] https://www.cac.gov.cn/2025-05/20/c_1749446498560205.htm
> NAT64 - the method I’ve setup for this test
> IPv6 is absolutely ready for prime-time and has been for awhile
So... No, you spent a week effectively using both v6 and v4 with extra steps. If someone said "Linux is ready for primetime" but their setup only worked because they ran a bunch of applications in a Windows VM, I'd call that strong evidence that it really wasn't. Same here.
That said... This is from early 2023. Any chance it's better now?
- My local ISP (US Internet, soon to be part of T-Mobile Fiber) hasn't enabled it, even though the CEO has said on Reddit for years that it's a priority. Now that they've been acquired who knows if it'll ever happen.
- Linode allows transferring v4 addresses between machines, so if I need to rebuild something I can do so without involving my client who usually has control over DNS. They do not support moving v6 addresses, which means that the only sites I have control over that support v6 are the ones that I control DNS.
Making IPv6 a thing seems like it would be super easy if a couple hours could be spent solving a bunch of dumb lazy problems.
It was a painful experience of trying to work out if I had misconfigured it, if it was something to do with my opensource router software or if it was my ISP or the end services. I didn't get to the end of working this out and reporting issues and I just gave up. Due to the intermittent nature of the issues I was facing I never managed to get a report of issues my ISP would accept.
So I'll give it some time and give it a try after a year and see if things have improved, but it was definitely not ready for prime time.
Maybe 2026 will be the year of IPv6. I kinda doubt it given I'm some jackass and dedicated network professionals still don't use IPv6.
In theory this makes sense, but in practice my personal experience is that not a single wireline ISP I've ever seen deploy CG-NAT offered IPv6 service at all, nor did any of them indicate any intent or even interest when asked about it.
The mobile providers on the other hand have almost entirely gone IPv6-first, using 6>4 transition methods as the default form of v4 access which I fully support.
4>4 CG-NAT should never have existed and providers who deploy it without offering fully functional v6 should be shamed.
This has worked for me well for a couple years. I do use a VLAN to keep the IPv6-only network separate (homelab) from video streamers in the household.
In my pf.conf:
# IPv6 tunnel
block in log on $tun6_if all
block in quick on $tun6_if inet6 from fd00::/8 to any
antispoof quick for $tun6_if
# allowed icmp6
pass in quick log on $tun6_if inet6 proto icmp6 icmp6-type {
unreach, toobig, timex, paramprob, echoreq
}
# MSS clamping 60 bytes less than HE 1480
# 20 byte IPv4 tcp header + 40 byte IPv6 ip header
match on $tun6_if all scrub (random-id max-mss 1420)
and in /var/unbound/etc/unbound.conf: # DNS64/NAT64
module-config: "dns64 validator iterator"
dns64-prefix: 64:ff9b::/96
Done. I don't have 464XLAT on Win11 but I do want to know if there's a hard coded IPv4 address anyway. I never had an issue.- How to ensure there are no collisions in address space? Translates to, how to pick safe addresses, is there a system?
- How do I route from an external network resource to an internal network resource? Translates to, can you provide syntax on how to connect to an smb share? Set up a web service that works without WireGuard or equivalent?
- How does one segment networks, configure a vlan, set up a firewall?
Reasons given: the security policies say ipv6 is not safe enough.
I said the same thing for 6-6-16 too.
As far as I know, the majority of websites (about 70%) do not support IPv6.
Totally understand why carriers may want IPv6 mostly and a v4-free core. But as an end user dual stack just seems simpler.
Tbh though the docker problems are very serious and extremely painful to work around. Everything works great apart from Docker which has so many issues - it does not handle IPv6 inbound but IPv4 out well at all (at least as far as I can tell!).
NAT-less network is really cool, I can serve content directly from anything from my LAN.
We should really leave IPv4 and move on.
Most of the domestic IPv4 networks have port 25 blocked for incoming connections. Maybe in the IPv6 realm things are bit more relaxed.
ipv6 is a beautiful protocol, (not perfect, but elegant) with a lot going for it. But the momentum of ipv4 is just too strong.
It's a mess... with no good solution. I tried to turn off ipv4 and github (shame on you) stopped working. But what are we supposed to do? Have the government mandate everyone switch? (oh wait half of US government websites are ipv4 only)
We did this to ourselves...
I suspect that what will actually end up being implemented, will be a core subset of the spec.
We'll have to see what's still standing, when the dust settles.
Try connecting to your IPv6-only service on Hotel WiFi -- you usually can't.
It's unfortunate, but IPv6 doesn't really solve any problems for a home user. And I say this as someone that has deployed IPv6 at home before.
- random slowdowns
- horrible routing
- larger packet overhead
- hated by a lot of the people who run the internet
- hated by companies who provide ddos protection
- my poor TCAM cache in my budget routers
- supporting ipv6 is really expensive in chassis routers
However, I believe there is a solution: Swap ISP's to IPv6 only, swap to IPv4 unless there is an IPv6 route present then directly forward. This solves quite a few issues: Once every ISP has IPv6 you can drop ipv4 and swap directly to ipv6 without having to split your TCAM. This works because IPv6 can encode IPv4 in it.
IPv6 essentially enables "universal internet IDs" for every device, which could streamline a lot of things, but enable a lot of weird surveillance/power balance issues that the cruft of IPv4 is actually incidentally helping guard against.
Again, I'm old enough to remember when e.g. the ISPs were going to try to charge per device in each household.