P(A|AAAA) = p^4
P(A|BBBB) = (1-p)^4
Anyway, the apparent strangeness of the tie case comes from the fact that the binomial PMF is symmetric with respect to n (the number of participants) and n-k. PMF = (n choose k) * p^k * (1-p)^(n-k)
So when k = n/2, the symmetry means that the likelihood is identical under p and 1-p, so we're not gaining any information. This is a really good illustration of that; interesting post! (edit: apparently i suck at formatting)When it comes to the wisdom of crowds, see https://egtheory.wordpress.com/2014/01/30/two-heads-are-bett...
F T (Alice)
F xx ????????
xx ????????
T ?? vvvvvvvv
?? vvvvvvvv
^ ?? vvvvvvvv
B ?? vvvvvvvv
o ?? vvvvvvvv
b ?? vvvvvvvv
v ?? vvvvvvvv
?? vvvvvvvv
(where "F" describes cases where the specified person tells you a Falsehood, and "T" labels the cases of that person telling you the Truth)In the check-mark (v) region, you get the right answer regardless; they are both being truthful, and of course you trust them when they agree. Similarly you get the wrong answer regardless in the x region.
In the ? region you are no better than a coin flip, regardless of your strategy. If you unconditionally trust Alice then you win on the right-hand side, and lose on the left-hand side; and whatever Bob says is irrelevant. The situation for unconditionally trusting Bob is symmetrical (of course it is; they both act according to the same rules, on the same information). If you choose any other strategy, you still have a 50-50 chance, since Alice and Bob disagree and there is no reason to choose one over the other.
Since your odds don't change with your strategy in any of those regions of the probability space, they don't change overall.
Slide Alice's accuracy down to 99% and, again, if you don't trust Alice, you're no better off trusting Bob.
Interestingly, this also happens as a feature of them being independent. If Bob told the truth 20% of the time that Alice told a lie, or if Bob simply copied Alice's response 20% of the time and otherwise told the truth, then the maths are different.
Instead of three independent signals, you'd evaluate: given how Alice and Bob usually interact, does their agreement/disagreement pattern here tell you something? (E.g., if they're habitual contrarians, their agreement is the signal, not their disagreement.)
Take it further: human + LLM collaboration, where you measure the ongoing conversational dynamics—tone shifts, productive vs. circular disagreement, what gets bypassed, how contradictions are handled. The quality of the collaborative process itself becomes your truth signal.
You're not just aggregating independent observations anymore; you're reading the substrate of the interaction. The conversational structure as diagnostic.
So much of this breaks down when the binary nature of the variables involved becomes continuous or at least nonbinary.
It's an example of a more general interest of mine, how structural characteristics of an inferential scenario affect the value of information that is received.
I could also see this being relevant to diagnostic scenarios hypothetically.
One example of this is in airplanes.
at 4 heads, just randomly select a jury of 3. and you're back on track.
at a million heads, just sum up all their guesses, divide by one million, and then check the over/under of 0.50
Now replace fail with lying and you have the exact same problem.
Either they agree, or they disagree.
If they agree, they're either both telling the truth or both lying. All you can do is go with what they agreed on. In this case, picking what they agreed on is the same as picking what one of them said (say, Alice).
If they disagree, then one is telling the truth and one is lying and you have no way to tell which. So just pick one, and it makes no difference if you pick the same one every time (say, Alice).
So you end up just listening to Alice all the time anyway.
"A:T, B:T - chances - H 6.0% | T 94.0% | occurs 34.0% of the time"
By the simplest of math for unrelated events, the chance of both A & B lying about the coin is 20% of 20%, or .2 * .2 = 0.04, or 4.0% ...
The "Let's prove it" section contains the correct analysis, including that our chance of being correct is 80% with two friends.
The code output for three players is similarly flawed, and the analysis slight misstates our chance of being correct as 90.0% (correctly: 89.6%).
Or am I missing something about the intent or output of the Python simulation?
I wrote a quick colab to help visualize this, adds a little intuition for what's happening: https://colab.research.google.com/drive/1EytLeBfAoOAanVNFnWQ...
I didnt't math during the thinking pause, but my intuition was a second liar makes it worse (more likey to end up 50-50 situation) and additional liars make it better as you get to reduce noise.
Is there a scenario where the extra liar makes it worse, you would be better yelling lalalallala as they tell you the answer?