In reality copper is just convenient. We use it because it's easy to work with, a great conductor, and (until recently) quite affordable. But for most applications there's no reason we couldn't use something else!
For example, a 1.5mm2 copper conductor is 0.0134kg/m, which at current prices is $0.17 / meter. A 2.4mm2 aluminum conductor has the same resistance, weighs 0.0065kg/m, which at current prices is $0.0195 / meter!
Sure, aluminum is a pain to work with, but with a price premium like that there's a massive incentive to find a way to make it work.
Copper can't get too expensive simply due to power demands because people will just switch to aluminum. The power grid itself had been using it for decades, after all - some internal datacenter busbars should be doable as well.
> "Tat sounds like the ultimate catalyst for the commodities market and copper has been hitting records."
"Tat" should be "That", imo.
https://developer.nvidia.com/blog/nvidia-800-v-hvdc-architec...
Quickly doing such "back of an envelope" calculations, and calling out things that seem outlandish, could be a useful function of an AI assistant.
Even among engineering fields routine handling of diverse and messy unit systems (e.g. chemical engineering) are relatively uncommon. If you work in one of these domains, there is a practiced discipline to detect unit conversion mistakes. You can do it in your head well enough to notice when something seems off but it requires encyclopedic knowledge that the average person is unlikely to have.
A common form of this is a press release that suggests a prototype process can scale up to solve some planetary problem. In many cases you can quickly estimate that planetary scale would require some part of the upstream inputs to be orders of magnitude larger than exists or is feasible. The media doesn't notice this part and runs with the "save the planet" story.
This is the industrial chemistry version of the "in mice" press releases in medicine. It is an analogue to the Gell-Mann amnesia effect.