My project has a C++ matching engine, Node.js orchestration, Python for ML inference, and a JS frontend. No LLM suggested that architecture - it came from hitting real bottlenecks. The LLMs helped write a lot of the implementation once I knew what shape it needed to be.
Where I've found AI most dangerous is the "dark flow" the article describes. I caught myself approving a generated function that looked correct but had a subtle fallback to rate-matching instead of explicit code mapping. Two different tax codes both had an effective rate of 0, so the rate-match picked the wrong one every time. That kind of domain bug won't get caught by an LLM because it doesn't understand your data model.
Architecture decisions and domain knowledge are still entirely on you. The typing is faster though.
Right now I see the former as being hugely risky. Hallucinated bugs, coaxed into dead-end architectures, security concerns, not being familiar with the code when a bug shows up in production, less sense of ownership, less hands-on learning, etc. This is true both at the personal level and at the business level.
The latter, you may be less productive than optimal, but might the hands-on training and fundamental understanding of the codebase make up for it in the long run?
Additionally, I personally find my best ideas often happen when knee deep in some codebase, hitting some weird edge case that doesn't fit, that would probably never come up if I was just reviewing an already-completed PR.
I don't think these are exclusive. Almost a year ago, I wrote a blog post about this [0]. I spent the time since then both learning better software design and learning to vibe code. I've worked through Domain-Driven Design Distilled, Domain-Driven Design, Implementing Domain-Driven Design, Design Patterns, The Art of Agile Software Development, 2nd Edition, Clean Architecture, Smalltalk Best Practice Patterns, and Tidy First?. I'm a far better software engineer than I was in 2024. I've also vibe coded [1] a whole lot of software [2], some good and some bad [3].
You can choose to grow in both areas.
[0]: https://kerrick.blog/articles/2025/kerricks-wager/
[1]: As defined in Vibe Coding: Building Production-Grade Software With GenAI, Chat, Agents, and Beyond by Gene Kim and Steve Yegge, wherein you still take responsibility for the code you deliver.
If you keep some for yourself, there’s a possibility that you might not churn out as much code as quickly as someone delegating all programming to AI. But maybe shipping 45,000 lines a day instead of 50,000 isn’t that bad.
idk what ya'll are doing with AI, and i dont really care. i can finally - fiiinally - stay focused on the problem im trying to solve for more than 5 minutes.
Fortunately, I've retired so I'm going focus on flooding the zone with my crazy ideas made manifest in books.
Which frankly describes pretty much all real world commercial software projects I've been on, too.
Software engineering hasn't happened yet. Agents produce big balls of mud because we do, too.